Does actin bind to the ends of thin filaments in skeletal muscle?

نویسندگان

  • S Ishiwata
  • T Funatsu
چکیده

We examined whether or not purified actin binds to the ends of thin filaments in rabbit skeletal myofibrils. Phase-contrast, fluorescence, and electron microscopic observations revealed that actin does not bind to the ends of thin filaments of intact myofibrils. However, in I-Z-I brushes prepared by dissolving thick filaments at high ionic strength, marked binding of actin to the free ends, i.e., the pointed ends, of thin filaments was observed when actin was added at an early phase of polymerization. As the polymerization of actin proceeded, the binding efficiency decreased. The critical actin concentration for this binding was higher than that for polymerization in solution. The binding of G-actin was not observed at low ionic strength. On the basis of these results, we suggest that a particular structure suppressing the binding of actin is present at the free ends of thin filaments in intact myofibrils and that a part of the end structure population is eliminated or modified at high ionic strength so that further binding of actin becomes possible. The myofibril and I-Z-I brush appear to be useful systems for studies aimed at elucidating the organizational mechanisms of actin filaments in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle

The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomy...

متن کامل

Tropomodulin caps the pointed ends of actin filaments

Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle...

متن کامل

Nebulin regulates the assembly and lengths of the thin filaments in striated muscle

In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis...

متن کامل

eIF2 activated in spots

An actin ruler n page 947, McElhinny et al. suggest that nebulin is a molecular ruler for actin filaments in muscle cells. Muscle physiology depends on the precise alignment, length, and overlap of thin (actin) and thick (myosin) filaments. Capping proteins such as Tmod stop the growing and shrinking of dynamic thin filaments but lack the innate ability to know when to do so. The new results sh...

متن کامل

Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc.

The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1985